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This technical report presents the results of the Orbit Transfer Vehicle (OTV) Advanced

Expander Cycle Engine Study. The study was conducted by the Pratt & Whitney Aircraft

Group, Government Products Division of the United Technologies Corporation for the

National Aeronautics and Space Administration's George C. Marshall Space Flight Center
under Contract NAS8-33567.

The results of the study are contained in the following three volumes which are

submitted in accordance with the data requirements of Contract NAS8-33567.

Volume I -- Executive Summary

Volume II -- Final Technical Report

Volume III -- Engine Data Summary

This study was initiated in December 1979 with the technical effort completed in eleven

months. The study effort was conducted under the direction of the George C. Marshall Space

Flight Center's Science and Engineering Organization with Mr. Dale H. Blount as Contracting

Officer's Representative. The effort at P&WA/GPD was carried out under the direction of

James R. Brown, Program Manager.

The following individuals have provided significant contributions in the preparation of

this report.

C.D. Limerick -- Systems Performance Analysis

D.E. Galler -- Engine Cycle Analysis

J.W. Park -- Transient Analysis

J.R. Zant -- Transient Modeling

D.B. Roy -- Thermal Analysis

R.G. Jaeger -- Stress and LCF Analysis
G.W. Moore -- Injector Design

P.G. DeIvernois -- Pump Design

C. Twardochleb -- Turbine Design

J. Namisniak -- Engine Layout

A.M. Palgon -- Component Integration
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INTRODUCTION
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The objective of the Orbit Transfer Vehicle (OTV) Advanced Expander Point Design
Study was to generate the system design of a performance-optimized, advanced LOX/hydrogen

expander cycle space engine. This engine is intended to be used in an Orbital Transfer Vehicle
with an IOC date in the late 1980's.

The engine requirements that are emphasized by the OTV application include: high

specific impulse within a restricted installed length constraint, long life, multiple starts,

different thrust levels and man-rated reliability. Development and operational experience with

the expander cycle RL10 engine, combined with our experimental work on high-pressure

staged combustion rocket engines, led us to the conclusion that for upper stage space engine

applications, selection of the expander power cycle would result in an engine that would be

significantly cheaper to develop. Design studies on advanced engines for Shuttle upper stage

applications, that we carried out in the early 1970's, showed that the potential difference in

specific impulse between advanced expander and staged combustion cycle space engines was

less than 1%. This potential difference was too h)w, in our opinion, to justify the considerably

greater development cost and risk of the staged combustion engine in this size.

In 1973, under NAS8-28989, "Design Study of RL10 Derivatives," we designed the RL10

Category IV engine, a "clean sheet" update of the RL10 design concept, using the same

expander cycle, but optimized specifically for the Space Tug. The engine requirements for the

Full Capability Space Tug, and those for the OTV, as specified in Section 2.0 of the Scope of
Work (Engine Requirements), are very similar and are compared in the following:

2.0 OTV ENGINE REQUIREMENTS (FROM SOW)

2.1 Expander Cycle, with LH, and LOs

2.2 Engine Thrust 15K lb at MR 6.0:1

2.3 Installed Length (two-position nozzle retracted) _<60 in.
2.4 1980 State of the Art

2.5 MR Range of 6:1 to 7:1
2.6 Fuel NPSH 15 ft

Oxygen NPSH 2 ft

2.7 Life >__300 firings/10 hr

2.8 Chamber pressure spikes < _+5%

2.9 2-position contoured bell nozzle

2.10 Gimbal range +15 deg pitch

-6 deg pitch

_+6 deg yaw

2.11 Engine provides H_ and O._ autogeneous pressurization
2.12 Man-rated, provides abort return

2.13 Meet Orbiter Safety Requirements

2.14 Low Thrust Operation at _ 1K lb

RL10 CATETORY IV
Same

Same

57 in.

1973 Sta'_e of the Art

MR Range 5.5 to 6.5:1
Fuel NPSH 0 ft

Oxygen NPSH 0 ft
Same

Not specified
Same

_+4 deg pitch

_ 4 deg yaw
Same

Not specified
Same

Maneuver thrust at
3.75K lb

The impact of the differences in engine requirements, such as different inlet conditions,

gimbal angles and mixture ratio range and low thrust level is comparatively minor. An issue
that will have to be addressed in conjunction with the Vehicle System Contractors is how the

engine can assist in providing abort return of the vehicle.
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The study objective calls for a performance-optimized engine system design. For a typical

OTV mission, engine specific impulse has a far greater performance impact than engine weight

(+1 sec Isp would justify >40-1b increase in engine inert weight), so that the emphasis was on

maximizing specific impulse. Since engine cycle, propellents, nozzle concept installed length,

and mixture ratio are all specified, this is done primarily through increasing chamber pressure
and hence nozzle ratio.

A 15,000-1b thrust Advanced Expander Cycle Engine that has been optimized to meet the

study objective, is compared with the RL10 Category IV (1973} engine in the following:

RLIO

Category IV (1973)

Advanced Expander

Cycle Engine

Thrust 15,000 ib 15,000 lb
Installed Length 57 in. 60 in.

Chamber Pressure 915 psia 1500 psia
Area Ratio 401:1 640:1

ILC at 6.0 MR 470 sec 482 sec

Weight 424 lb 427 lb

Life 300 firings/10 hr 300 firings/10 hr
Operation

Full Thrust Saturated Propellants Low NPSH (2 ft 0_ 15 ft H:)

Low Thrust Saturated Propellants Saturated Propellants
Conditioning Tank Head Idle Tank Head Idle

Technology 1973 1980

The most significant difference between these two engines is that the specific impulse of
the Advanced Expander Cycle Engine has been increased to 482 sec. This 12-sec increase in

specific impulse over the RL10 Category IV engine is due to a combination of factors which

include: increased installation length (57 to 60 in.), updated performance prediction, use of the

"preheat" expander power cycle, improved technology turbopumps with higher efficiencies,
and reduced power margin.

Increasing the installed length of the 57-in. RL10 Category IV engine to 60 in. allows area

ratio to be raised to approximately 433:1, increasing Specific Impulse by 1 sec.

Testing carried out subsequent to 1973 on engines with very high-area-ratio nozzles (i.e.,
RL10 with ¢ = 205, ASE with ¢ = 175 and 400) showed that the achieved performance was

higher than that predicted by the current JANNAF methods by as much as 1.3%.

The chamber pressure of a power-limited expander cycle may be increased by preheating

the chamber coolant with the turbine discharge flow, thereby raising turbine inlet temperature,

and hence, increasing turbine power. This "preheat" expander power cycle was investigated on

an improved version of the RL10 Category IV, the "RL10 Category IV*." Chamber pressure is

increased by over 30% to approximately 1200 psia, giving an increase in specific impulse of
approximately 1%.

Further increases in chamber pressure have been obtained by increasing turbopump

efficiently through increasing speeds and by reducing turbine bypass flow. These higher speeds

may require a considerable effort in the design of the fuel turbopump to prevent its operation
at or below critical speed. Reducing turbine bypass flow from 5.7 to 3% reduces performance

degradation margin, which may be undesirable on a long life engine. The effect of these

changes is to allow chamber pressure to be increased by slightly less than 30% to 1,500 psia,
giving an increase in specific impulse of approximately _/2%.

_ 2
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Once the chamber pressure of an OTV engine is increased over 1,200 psia, the rate of

increase in specific impulse with further increases in chamber pressure is quite low (approx-

imately 1.3 sec/100 psia), and is decreasing, whereas the difficulty resulting from obtaining

these further increases is high, and is increasing. It was not the purpose of this study to

optimize performance gain vs development risk; rather, by maximizing performance in a point

design of adequate depth, the key performance "driver" elements in an advanced expander

cycle engine may be identified, thereby enabling the new technology requirements to be
defined.

The schedule followed by P&WA during the performance of this study is shown in Figure
1-1_ The interaction of the various design tasks is shown in Figure 1-2 and the results are

detailed in the following section of this report.
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ENGINE OPERATING CHARACTERISTICS

2.1 INTRODUCTION

The design of the Advanced Expander Cycle Engine (AECE) that resulted from this

study program conforms to the configuration requirements and operating conditions specified

by the contract Scope of Work. The starting point for this study was the preliminary advanced
expander cycle optimization task conducted in 1979 under Contract NAS8-33444. (See Pratt &

Whitney Report FR-13168, Orbit Transfer Vehicle Engine Study).

2.2 ENGINE SYSTEM

2.2.1 Engine Steady-State Operation

A simplified propellant flow schematic of the 15,000 lb thrust AECE is presented in

Figure 2-1. A brief description of the propellant paths at the engine design point (100% thrust

and MR = 6.0) follows. Fuel {hydrogen) enters the engine through a ball-type inlet shutoff

valve mounted on the inlet of a low-pressure pump (boost pump} that is gear-driven from the

main oxidizer turbopump shaft. The low-pressure pump operates at a rotational speed of

45,100 rpm with a 15 ft NPSH capability. From the low-pressure pump, fuel enters the first of

two back-to-back shrouded impeller centrifugal stages. The impellers are mounted on a shaft

driven by a single-stage, low reaction, full admission turbine. The high-pressure pump operates

at the nominal speed of 147,100 rpm. Approximately 5.8% of the fuel is used as a thrust-piston

balancing flow for the high-pressure pump. This flow is taken off at the second-stage

discharge, circulated to the thrust piston, and then injected back into the propellent flowpath
at the high-pressure pump interstage.

H2

FD 197567

Figure 2-I. Advanced Expander Engine Cycle

The fuel moves from the high-pres.sure pump discharge and enters the

hydrogen-hydrogen regenerator which utilizes energy from the turbine discharge flow to

preheat the chamber coolant. The regenerator is a cross-flow heat exchanger which increases

the temperature to approximately 350°R, providing the fuel in a gaseous state for cooling the

- 6
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thrust chamber. The chamber regenerative coolant enters an inlet manifold located at the

injector face plane and flows into and through the nontubular (copper alloy liner and

electroformed nickel shell) combustion chamber downstream past the throat to an area ratio of

approximately 6. There the coolant enters the tubular nozzle section and flows down half of
the tubes to an area ratio of 210:1 where a turnaround manifold routes it back (counter to the

combustion gas flow) through the remaining tubes. At an area ratio of approximately 60:1

where the double pass construction starts, the flow is collected in a manifold and is withdrawn.

At the jacket discharge, the fuel flow is split, with about 3% of the flow bypassed around

the turbines. This flow passes through the GOX heat exchanger providing the heat transfer for

gaseous oxygen tank pressurization capability, if required. The remaining 97% of the flow is

routed through the turbines to provide the power to drive the turbopumps, and then through

the hot side of the hydrogen-hydrogen regenerator. After leaving the regenerator, the turbine

bypass flow re-enters the main stream and hydrogen tank pressurization flow is removed

through the tank pressurization valve, if required. The flow is then injected into the thrust
chamber.

Oxidizer (oxygen) enters the engine through an inlet valve similar to the fuel-side inlet

valve. A low-pressure oxidizer pump, geared from the main oxidizer turbopump and operating

at a shaft speed of 9,750 rpm, provides the engine with a 2 ft. NPSH capability. The discharge

from the h)w-pressure pump enters a single-stage, shrouded, centrifugal-type, high-pressure
pump driven at a speed of 66,100 rpm by a single-stage, low reaction, full admission turbine.

Oxidizer tank pressurization, if required, is taken off downstream of the pump through a heat

exchanger where it is vaporized by hot fuel, and, is routed through the oxidizer tank

pressurization valve to the vehicle tank. The remainder of the flow continues to the oxidizer

control valve, which is preset to give the desired mixture ratio. From the control valve, the flow

enters the injector manifold and is injected into the combustion chamber.

A hydrogen-oxygen torch igniter is used to light the main combustion chamber. Fuel for

the igniter is tapped off immediately downstream of the turbines, and gaseous oxidizer is

supplied from the tank pressurization GOX heat exchanger.

During pumped idle operation, thrust is set at approximately 10% of the rated level. This

is accomplished by bypassing 54% of the total fuel flow around the turbine. The increased

turbine bypass flow also serves the purpose of providing the energy to the oxygen which is

diverted around the oxidizer control valve to a heat exchanger. This delivers gaseous oxygen to

the injector, resulting in greater combustion stability at the reduced pressure levels. At tank

head idle, which is utilized for pump cooldown and propellant settling, the pumps and turbines

do not rotate. The fuel flow bleeds down through the pumps, regenerator, and jacket where it
enters the turbine bypass leg. Here the flow splits with approximately 10% being routed to the

hot side of the regenerator to provide energy to the cold side, keeping vapor at the jacket inlet.

The remaining flow goes through the heat exchangers, vaporizing the oxidizer flow. This

results in a thrust level of approximately 70 lb.

Simple open-loop control of the engine assures stability. Stable control operation at the
three thrust levels is achieved by time sequencing five solenoid valves which pressurize main

valve cavities to establish the proper valve positions at each thrust setting. Ground mixture

ratio adjustment at each of the three thrust settings is provided.

Two of the valves have pressure feedback during the transition between thrust settings,

yet the valve positions are hard against a stop during steady-state operation. Should loss of

electrical power or helium pressure occur, all valves will move to their fail-safe position and a
safe engine shutdown will result.
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The engine is transitioned from one thrust setting to another utilizing vehicle electrical

signals. Two check valves are used for tank pressurization. A schematic showing the location of

each valve is provided in Figure 2-2. The 5 solenoid valves respond to the electrical signals by
opening the appropriate valve cavity to a pressure source, either helium, hydrogen, or oxygen

depending upon the application. These solenoid valves vent the valve cavities overboard when

deactivated. Figure 2-3 shows typical operation and responding action by the engine control

system.

Propellant shut-off is achieved using inlet shut-off valves which are low leakage cryogenic
valves and are helium-actuated open during all phases of engine operation.

The main fuel shut-off valve is a low-pressure loss valve which is closed during the tank

head idle mode of operation (zero speed). This valve is helium-actuated open during other

phases of operation. Shutdown is achieved by closing the main fuel shut-off valve as well as the
main fuel control valve to starve the combustion chamber of fuel and cause flame-out.

The oxidizer flow control valve is closed during the tank head idle and pumped idle

modes. It opens during the transition between pumped idle and full thrust when the oxidizer

pump pressure rise is above 465 psid. Ground adjustment of mixture ratio between 6.0 and 7.0

is provided at the full thrust setting.

The gaseous oxidizer (GO.) valve provides two functions. The first function is to allow

mixture ratio to change from 4.0 at tank head idle to 6.0 at pumped idle. The second function

is to change the phase at the oxidizer injector from gas to liquid as the engine accelerates from

pumped idle to full thrust. Ground adjustment of mixture ratio at tank head idle and pumped

idle is provided.

The main fuel control valve has three functions. One function is to vent fuel overboard

during shutdown, a second function is to direct flow to the fuel regenerator hot side during
tank head idle, and the third function is to set turbine bypass flow during the three thrust

settings. Ground adjustment of this valve at each of the three thrust levels is accomplished by

adjusting the needle valve at the full thrust level and the stop positions of the valve at the

tank head idle and pumped idle thrust levels.

Steady-state operating charateristics for the Advance Expander Cycle engine are shown

in Table 2-1 and in the cycle propellent flow schematics presented in Figures 2-4 through 2-6.

Off-design ful]-thrust specific impulse and thrust characteristics are presented in Figures 2-7
and 2-8 respectively.

2.2.2 Engine Transient Operating Characteristics

2.2.2.1 Ignition

Ignition occurs during the first 0.25 sec of the tank head idle transient. The tank head

idle mode is used to condition the pumps prior to rotation.

The start solenoid valve and the bypass solenoid valve No. 1 are energized causing the

fuel and oxidizer inlet shut-off valves, the turbine bypass, and the fuel regenerator poppet to
open and causing the fuel vent poppet to close. Spark to the torch igniter is initiated

immediately and terminated once the torch lights (about 0.2 sec).

Chamber ignition is approached from the oxidizer rich side, Figure 2-9. The oxidizer side

fills more rapidly than the fuel because of its reduced volume which allows simultaneous

opening of the fuel and oxidizer inlet shut-off valves. A torch igniter is used to provide the
ignition energy.
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TABLE 2-1. ENGINE STEADY-STATE DESIGN

POINT OPERATION

Operating

Full Thrust

Thrust (vac), Ib 15,000

Mixture Ratio 6.0

Chamber Pressure, psia 1500.

Specific Impulse, sec 482.2

Required Inlet Conditions

FueI-NPSH, ft 15

Temperature ° R 37.8

Oxidizer-NPSH, ft 2

Temperature °R 162.7

Engine Life (Time Between Overhauls}

Firings/hr >__300/10

Pumped Idle

Thrust (vac), lb 1500.

Mixture Ratio 6.0

Specific Impulse, sec 455.4

Tank Head Idle

Thrust Ivac), lb 72.

Mixture Ratio 4.0

Specific Impulse, sec 449.8

2555 psia 66,070 rpm p°R 1634 psia

9,750 rpm

1608 psia

2

26.7 Ib/sec

P = 16.0 psia

NPSH = 2 ft
H_

4.45 Ib/sec

P = 18.5 psia

NPSH = 15 ft

45,120 rpm

772°R

98°R

3720 psia

1500 psia
Isp = 482 sec

Thrust =

15,014 Ib

352°R

3145
psia

147,060 rpm
FD 197567C

Figure 2-4. Advanced Expander Engine Propellant Flow Schematic at Full

Thrust (MR = 6.0)
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205
16,620 rpm

18°R 194 psia

469°R 165 psia

2455

o2

2.82 Ib/sec

P = 16.0 psi_

H2

0.47 Ib/sec

P = 18.5 psia

Isp = 455 sec
154 psia Thrust = 1500 Ib

11,350

928°R

46°R 280 psia 952°R 204 psia

36,990 rpm
FD 197567B

Figure 2-5. Advanced Expander Engine Propellant Flow at Pumped Idle
(MR = 6.0)

0 rpm 581°R /'612°R '_'_

0.13 Ib/." _ _ 8.1 psia Thrust = 72
P = 15.6 psia

0.03 Ib

e = 18.2 psia [_ :_

893 ° R

_-0 rpm 14.1 psia

FD 197567A

Figure 2-6. Advanced Expander Engine Propellant Flow at Tank Head Idle
(MR = 4.0)
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Two ignition transients are presented in this report. One transient shows the ignition

characteristics when the pumps are initially at 500°R. In the other transient, the pumps are at

tank tempeature levels; a relight following a short coast situation. With the pump metal

temperatures initially at 500°R, the torch will light at about 0.07 sec when its mixture ratio

drops below 20, followed by main chamber ignition at 0.2 sec when its mixture ratio drops

below 20. Figures 2-9 and 2-10 show graphically the ignition and main chamber ignition.

Figures 2-11 through 2-17 present fuel and oxidizer system pressures, temperatures, flows, etc.

during the first 1.0 sec of firing. Ignition characteristics with the pumps already conditioned

are presented in Figures 2-18 and 2-19. The torch lights at 0.05 sec followed by main chamber

ignition at 0.12 sec.

2.2.2.2 Pump Conditioning

Pump conditioning is implemented utilizing the tank head idle mode where the fuel
bypasses the turbine and the pumps do not rotate. About 2 min are required to condition the

pump housings and impellers from an initial temperature of 500°R to the temperature level of

the propellants in the tank during which time 4 lb of fuel and 16 lb of oxygen consumed. This

represents less than 1 sec of full thrust consumption with a specific impulse penalty of only

7%. Figures 2-20 through 2-30 show engine characteristics during conditioning.

2.2.2.3 Tank Head Idle to Pumped Idle

Once the pump housings and impellers are cooled to tank temperatures during the tank

head idle mode, the engine may be transitioned to the pumped idle thrust setting. Figure

2-31A presents the valve sequencing for this transition. The bypass solenoid valve No. 1 is

closed, bypass solenoid valve No. 2 is opened, and the fuel shutoff solenoid valve is opened.
Closing the bypass solenoid valve No. 1 closes the turbine bypass valve and closes the bleed

valve supplying flow to the regenerator hot side. With the main fuel shut-off valve open and

the turbine bypass valve closed, all the fuel is directed through the turbine producing the

maximum available torque for break-away. Opening bypass solenoid valve No. 2 allows the
bypass valve to open to its pumped idle setting as valve inlet pressure (speed) increases. Also

as speed increases, the gaseous oxidizer valve opens further to adjust mixture ratio from 4 at

tank head idle to 6 at pumped idle. The engine characteristics during this transient are shown

as the first 8 sec of Figures 2-32 through 2-53.

2.2.2.4 Pumped Idle to Full Thrust

The transition from the pumped idle thrust setting of 1500 lb to the full thrust setting of

15,000 lb is initiated by closing the bypass solenoid valve 2 and opening the oxidizer solenoid

valve (see Figure 2-31-B). Closing the bypass solenoid valve, vents the turbine bypass valve
cavity causing the bypass valve to close. Opening the oxidizer solenoid valve allows the gaseous

oxidizer valve to close as valve inlet pressure increases. The oxidizer flow control valve will

open when the overall oxidizer pump pressure rise is greater than 465 psid. The opening of the

oxidizer flow control valve occurs just prior to the gaseous oxidizer valve closure. The pressure

level for the switch from gaseous oxidizer at the injector to liquid is chosen so that the injector

pressure differential (AP/P) is sufficient to assure combustion stability. These transient

characteristics are shown between 10 and 18 sec of Figures 2-32 thr(mgh 2-53.
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2.2.2.5 Full Thruet to Pumped Idle

For accurate shutdown impulse it was assumed that the engine would return to pumped

idle prior to full engine shutdown.

The transition from full thrust to pumped idle is achieved by opening the bypass solenoid

valve No. 2. The bypass valve area opens as the valve cavity fills. Speed will decrease rapidly
with the associated loss in turbine flow. The gaseous oxidizer valve will open when its

upstream pressure drops below 600 psia followed by closure of the oxidizer flow control valve

when the oxidizer pump pressure rise drops below 465 psid {Figure 2-31C). The opening and

closing of the two oxidizer valves directs the liquid oxygen through the oxidizer heat exchanger

which changes it to a gas before it reaches the injector. The switch from liquid to gas is done to
maintain sufficient injector velocity during low flow conditions to maintain stable combustion.

These transient characteristics are shown between 20 and 28 sec shown in Figures 2-32 through

2-53.

The oxidizer solenoid valve is closed 5 sec following the command to return to pumped

idle. If shutdown is imminent the oxidizer solenoid valve may remain opening allowing the

shutdown signal to close it. However, if a steady-state pumped idle is required, the oxidizer
solenoid valve should be closed anytime after the gaseous oxidizer valve opens (about 2 sec

after the command is given to return to pumped idle). Figure 2-54 shows the influence on

vehicle mixture ratio of closing or leaving open the oxidizer solenoid valve.

2.2.2.6 Shutdown

As previously stated, it was assumed that the engine would be shut down from either

pumped idle or tank head idle. Shutdown is initiated by removing voltage from all solenoid
valves causing the other valves to move to their fail safe positions. Both inlet shut-off valves

close to eliminate further propellant consumption. A vent in the main fuel control valve opens

to relieve pressure downstream of the fuel pumps. The fuel bleed valve, the turbine bypass
valve {which is an integral part of the main fuel control valve) and the main fuel shut-off valve

all close to starve the combustion chamber of fuel. The oxidizer control valve closes during the

deceleration from full thrust when the oxidizer pump pressure rise drops below 465 psid. The

gaseous oxidizer valve will open when power is removed from the solenoid. Oxidizer flow to the
combustion chamber will continue until it is completely expelled downstream of the inlet

shut-off valve. The fuel to the combustion chamber is depleted long before the oxidizer,

causing an oxidizer rich flame-out.
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SECTION 3

MAJOR COMPONENT ANALYTICAL DESIGN

A detailed analytical design effort was conducted on the following major engine compo-

nents: thrust chamber/nozzle assembly including the injector and ignitor, hydrogen regenerator
G0X heat exchanger, and the fuel and oxidizer turbopumps. These components are discussed

in the following paragraphs.

3.1 THRUST CHAMBER/NOZZLE ASSEMBLY DESIGN ANALYSIS

The thrust chamber and nozzle size and contours were initially determined during the

parametric cycle performance studies and combustion system analysis performed under NASA

Contract NAS8-33444. A chamber length of 15 in. and a chamber contraction ratio of 4 were

selected as optimum for the advanced expander cycle engine. During this design study, a heat

transfer analysis was conducted on the preliminary chamber design to ensure adequate cooling

commensurate with cycle limitations. The design analysis of the thrust chamber and nozzle

was perhJrmed at the engine ()f'f-design mixture ratio of 7.0 operating point because it provided

the severest thermal conditions in the operating envelope. A schematic of the thrust
chamber/nozzle assembly is presented in Figure 3-1. A maximum performance nozzle contour

with an area ratio of 640:1 was chosen for the engine based on the length limitations and

design point chamber pressure and mixture ratio. In addition, a radiation-cooled

carbon-carbon composite secondary nozzle was selected over a conventional dump-cooled

nozzle because of its lighter weight and favorable thermal characteristics.

3.1.1 Thrust Chamber Design Analysis

The advanced expander cycle combustion chamber, throat, and primary nozzle are of one

piece, nontublar, regeneratively cooled construction, shown in Figure 3-2. The curved combus-

tion side hot wall design was chosen over a flat hot wall design since it provided greater LCF

life. The non-tubular thrust chamber liner design will be fabricated from the copper-zirconium

alloy, aged AMZIRC. This alloy has improved thermal fatigue and strength properties over

pure copper, but at a small loss in thermal conductivity. Axial cooling passages are milled in

the AMZIRC thrust chamber liner OD and the passages are closed with electrodeposited
copper. A shell of nickel is then electrodeposited over the copper to act as the

strength-carrying member and outer wall The non.tubular construction begins at the injector

face and terminates downstream of the throat at an area ratio of approximately six, where the

heat flux is low enough to allow the use of standard tubular construction. These slots vary in

width and depth along their axial length to achieve the desired local coolant flow velocities.

P&WA/GPD -- developed computer program D5160-90 was utilized to perform the heat

transfer and pressure loss calculations; formulations were used that allowed the determination

of the combustion-side and coolant-side convective environments from chamber geometries

and engine operating conditions. The combustion gas environment was determined using the
Mayer integral boundary layer analysis and enthalpy driving potential. The coolant gas

environment was predicted by empirically determined correlations for hydrogen heat transfer

coefficients modified to account for the effects of passage surface roughness (using the Dipprey

and Sabersky method) and the effects of passage curvature. Constraints, used during the sizing

of the coolant passage, are as follows: a maximum coolant Mach no. of 0.40 to limit the

pressure loss through the passage and a maximum hot wall temperature of 1700°R to give 1200

cycles to failure for aged-AMZIRC.
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Figure 3-2. ('ombustion Chamber Wall Detail

A contraction ratio of 4 was selected for the thrust chamber, based on previous

parametric studies. The thermal analysis for the thrust chamber design was made at the

off-design mixture ratio of 7 operating point, since it presented the severest conditions in the
operating envelope. Parallel flow and counterflow cooling schemes were investigated for the

chamber but the counterflow scheme was eliminated because of excessive pressure losses in the

manifolding. Coolant passage geometry was defined and pressure and temperature character-

istics were generated at mixture ratios of 6.0 and 7.0 for full thrust and at the pump idle and

tank head idle design points. Table 3-1 presents these characteristics for the parallel flow

configuration with a full thrust counterflow point at an OfF of 7 included for comparison. The

optimized passage geometry selected and all pertinent parameters for the mixture ratio of 7.0

design point are shown in Figures 3-3 and 3-4.

An LCF analysis of the thrust chamber was conducted using a MARC plastic finite
element analysis that considered a complete upload/down load strain cycle, using the large

displacement solution option. The OTV mission required 1200 cycles of life in the thrust

chamber (300 cycles with a safety factor of 4). The performance requirements of the engine

cycle point resulted in a 1759°R hot wall temperature and an 842°R cold wall temperature at
the thrust chamber throat. Minimum life was found to occur at the throat and was calculated

to be 760 cycles using l/2 hard AMZIRC {zirconium copper} fatigue properites taken from

NASA publication CR-121259. Decreasing the hot wall temperature by approximately 80°R

would raise the minimum life to above the 1200 cycle goal. Analysis using limited LCF data on

aged AMZIRC found in NASA publication TMX 73665 indicates that the predicted cycle life
could be increased by more than a factor of 3 over % hard AMZIRC. It is recommended that

additional material characterization and fatigue data be obtained for aged AMZIRC.

3.1.2 Tubular Primary Nozzle Design Analysis

The hydrogen coolant from the thrust chamber channels enters the inlet manifold

{transition manifold) of the primary nozzle downstream of the throat and immediately flows

into 180 single tapered tubes. The 180 tubes then taper until the primary nozzle circumference

is correct to transfer over to a 360 double pass configuration. The coolant flow then passes

through half the double pass tubes traveling toward the trailing edge of the primary nozzle
where a turn-around manifold reverses the flow and returns it back up the nozzle in the other

180 tubes. Near the point where the double pass tubes begin (at _=60), the coolant is
withdrawn as shown in Figure 3-5.
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Table 3-I. Thrust Chamber and Primary Nozzle H=, Coolant Conditions at Selected Design Points

Parallel Flow

Tank Counter/low

Design Point O/F = 7.0 O/F = 6.0 Pump Idle Head Idle O/F = 7.0

Thrust Chamber Thermal Skin

Primary b]ozzle

T,. -- °R 407 367 374 150

P,,, -- psia 4055 3859 304 16.2

T,,,,, -- °R 845 738 876 543

P,,,,, -- psia 3673 3496 248 12.6

Th,,,_,,It .... --oR 1710 1514 1160 603

T,,.,-- °R 990 874 1068 729

P,,o_ -- psia 3597 3425 233 11.3
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Figure 3-3. Combustion Chamber Coolant Passage Depth and Mach No.
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Using exit pressures and temperatures from the combustion chamber coolant analysis
{which includes the transition manifold pressure loss) to define the initial flow conditions

entering the primary nozzle, P&WA/GPD heat transfer computer program D5160-69, was used

to predict metal and fluid criteria for the tubular nozzle. In this code, the wall temperatures

are predicted based on a one-dimensional steady state heat balance analysis. Combustion gas

and coolant gas environments were determined using the same analysis techniques described

earlier for the thrust chamber. Table 3-1 contains fluid pressure loss and temperature increase

characteristics for the primary nozzle for full thrust at mixture ratios of 6.0 and 7.0, a pumped

idle point and a tank head idle point. Figure 3-6 presents the predicted hot wall metal

temperature profile for the thrust chamber/tubular primary nozzle assembly at full thrust and
a mixture ratio of 7.0.
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o 1500
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N 1300
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Figure 3-6. OTV Engine Thrust Chamber and Primary Nozzle Hot Wall

Metal Temperature Prediction
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3,1.3 Carbon-Carbon Extendible Nozzle Design Analysis

A radiation-cooled carbon-carbon extendible nozzle was selected for over a conventional

dump-cooled metal alloy nozzle because of its light weight and favorable thermal character-

istics. The thermal characteristics of the radiation-cooled secondary nozzle were defined at the

severest thermal environment: full thrust and a mixture ratio of 7.0. A series of finger seals will

be provided between the tubular primary nozzle and the nozzle extension. These seals will be

purged with gearbox H2 leakage which will then be used as a film cooling agent for the

extendible nozzle. For the thermal analysis conducted during this preliminary design phase,

film cooling effects of the primary nozzle/secondary nozzle seal coolant flow were not

considered. However, maximum predicted nozzle temperatures were still less than 2400°R

which is well within the allowable temperatures for carbon-carbon material. Wall temperature

profile characteristics are shown for the secondary nozzle in Figure 3-7.

3.1.4 Injector Design Analysis

The injector was designed to provide efficient and stable combustion under all normal

operating conditions. A combustion efficiency of 99.7% and a stability of less than _+5%

chamber pressure oscillations were used as design goals during analysis. Figure 3-8 shows

combustion efficiency as a function of injector element at the design point conditions. The

injector contains 84 tangential entry swirl injection elements arranged in a uniform hexogonal

pattern around a central torch igniter. Figure 3-9 presents the injector assembly as well as a

cross section of one of the elements. The design for these elements is based on empirical

correlations resulting from many years of P&WA experience with this type of element in

rocket and laser development systems. The fuel is injected through an annulus around each

oxidizer element, except that which is required for rigimesh cooling (_ 5%). The fuel orifice is
full annular, a design preferred for uniform distribution. The annulus has extremely close

tolerances, however, and since concentricity must be assured, it may be necessary to insert 3

tangs into the annulus to preserve that concentricity. The effective flow area of the annulus

must remain the same and, to preserve as much fuel flow uniformity as possible, the tangs

should be designed to present the minimum blockage.

The outer oxidizer elements of the injector are scarfed at a 45 deg angle to prevent

oxidizer impingement on the wall. The injector face is coned at a 5 deg angle to prevent an

oxidizer spud failure from producing an oxidizer impringement on the wall. In addition, the
coned configuration of the injector face has been shown, in previous programs, to contribute to

the combustion stability of the chamber.

The rigimesh injector faceplate uses a 400 SCFM rated rigimesh material to produce a
cooling flow of 5% of the hydrogen flow at the design point. Standoffs required to attach the

rigimesh are cylindrical, with as small a diameter as feasible. They are located equidistant

from the three closest oxidizer spuds and are uniformly distributed at equal radii. The fuel

manifold has a 0.50 in height between the back of the rigimesh and the oxygen manifold. This

separation is required to minimize static pressure drop between the outer and inner radii

allowing optimum fuel flow uniformity.
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3.1.5 Torch Igniter Design Analysis

The igniter selected for the advanced expander cycle engine, shown in Figure 3-10, is a

continuous torch igniter with the capability of a vacuum start and reliable multiple ignitions.

The igniter is centrally located on the injector face and utilizes two tangential entry swirl

injection elements. Two spark igniters are located in the same plane as the injectors. This

arrangement will provide for rapid ignition while protecting the spark igniters during extended

operation. The torch igniter liner is formed of hydrogen cooled rigimesh, similar to the one

proposed for the P&WA Advanced Space Engine in 1973. The rigimesh liner will allow

continous operation with high durability as demonstrated in the RL10. The torch igniter is

designed for continuous operation at an 0/F=4.0. This mixture ratio will burn cooler than the

engine mixture of 6.0 and enhance the igniter life. Additionally, the igniter will provide a

continuous source of hot hydrogen to the chamber.

Oxidizer
Inlet

Jl
Fuel Inlet

..__.,_ L Igniter
1 (2 Required)

J

J
Rigimesh

Liner

Figure 3-10. Igniter Assembly

FD 197595

3.2 HYDROGEN REGENERATOR DESIGN ANALYSIS

The function of the hydrogen regenerator is to increase the turbine inlet temperature by

recovering heat downstream of the turbines and by using it to preheat the fuel prior to cooling

the thrust chamber and primary nozzle. This provides a higher fluid temperature at the

turbine inlet, increasing the available turbopump power. Because of the relatively low thermal

effectiveness requirements (_ 40%) of the regenerator, a cross-flow configuration was selected

to provide ease of manifolding. The regenerator is a milled channel design consisting of a stack

of 0.050 in. thick aluminum plates with small passages machined in each plate. Hot and

cold-side plates are alternated with the passages at right angles for a total of 61 hot and 60

cold plates. This design is lightweight, compact, easy to fabricate, and capable of withstanding

the high hot-to cold-side differential pressure. Fluid and thermal analysis for the regenerator
was carried out using a conventional effectiveness -- number of tranfer units (NTU) pro-

cedure. Figure 3-11 shows a sketch of the regenerator core arrangement and provides the

design parameters and fluid condition at the design point.
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3.3 GASEOUS OXYGEN HEAT EXCHANGERS

A GOX heat exchanger is required for the 0TV engine to provide gaseous oxygen for

propellant tank pressurizationduring fullthrust and pumped idleoperting modes and also to

vaporize the engine oxidizer during tank head idleoperation.However, studies indicatethat a

single compact heat exchanger could be subject to large,boiling-induced pressure and flow

oscillationson the 0, side at low mass qualities(lessthan 15%) which occur during the tank
head idlemode.

This condition would resultin unacceptable mixture ratiochanges occurring in the main

combustion chamber. The inclusionof a GOX vortex tube prevaporizer upstream of the G0X

heat exchanger (0_side) isrecommended specificallyto eliminate such a problem.

The vortex tube prevaporizer concept is based on a unique application of state-of-the-art

technology being studied for high-energy laser mirror and fusion target plate designs where
high heat transfer rates and dynamically stable flow are critical requirements. The vapor-

ization of liquid oxygen in zero "g" space environment is, furthermore, a logical application of

the tangential entry, free vortex, swirl flow concept. The proposed design confirguration of the

vortex tube prevaporizer and tank head idle fluid parameters are shown in Figure 3-12 with

the basic operation discussed in the following paragraphs.

Saturated LOX is injected tangentially near the closed end of a large diameter pipe and

is allowed to spiral in a helical path toward the open end. The vortex pattern thus produced

suppresses the transition from nucleate boiling to film boiling and allows extremely high heat

transfer rates to be achieved. The centrifugal forces generated by the swirling flow, force the

liquid to the outer wall and allow the vapor to flow to the center of the tube. This action, in
effect, separates the liquid and vapor phases so that boiling instabilities are not present. The

liquid oxygen flowing along the wall is then allowed to stop its vortex flow pattern (by vanes or

other antivortex devices) as it exits the prevaporizer, whereupon it "flashes" to tiny droplets

and joins the vapor flow before entering the GOX heat exchanger. The heat source for LOX

vaporization is the GH_ flowing in a jacket that surrounds the vortex tube.

The GOX heat exchanger was sized for single phase gas conditions on both the hot-and

cold-sides. The selected geometry was of a compact crossflow design utilizing a milled
channeled construction. Figure 3-13 show a sketch of the GOX heat exchanger core arrange-

ment and provides important geometric and fluid flow design, parameters at tank head idle

and pumped idle.

3.4 TURBOPUMPS

3.4.1 Main Fuel Pump

The OTV main fuel pump is a two-stage centrifugal turbopump design. The design

constraints which were established for this pump include: (1) 2000 ft/sec tip speed limit for the

bonded shrouded impellers with 25 deg back-swept blades, (2) 3 × 10 _ DN bearing limit and

(3) 25% critical speed margin. Both two and three stage designs were assessed with regard to

pertinent hydrodynamic and structural condsiderations prior to selecting the two stage

configuration.
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Core Size

T !j ,,n

H2 in.

0.015 0.030

__o.o o_ 
View A 0.015

Note: Sized for Gas Conditions Both Sides

Parameter Tank Head Idle Pumped Idle

H_ W (Ibm/sec) 0.028 0.251

O, W (Ibm/sec) 0.128 2.783
H_ T,_ (°R) 882 940

H2 TEX (OR) 637 641

O2 T,, (°R) 162 164
O2 TEx (°R) 612 218

H2 P,, (psia) 9.46 165.1

H2 PEx(psia) 9.39 164.7

O2 P,, (psia) 15.60 205.4
02 PEx (psia) 15.53 193.6

H; _P (psia) 0.07 0.4

02 ..kP (psia) 0.07 11.8

Q (Btu/sec) 19.3 413

FD 212863

Figure 3-13. Gaseous Oxygen (GOX) Heat Exchanger

Preliminary sizing estimates showed that the pump would require a minimum bearing

size of 20 mm. In the interest of attaining the highest possible specific speed and efficiency,

the maximum allowable design rpm, based on the bearing DN limit, was established at

150,000 rpm. The shaft length was then sized to accommodate the two shrouded impellers plus
inducer, two bearings, second stage volute inlet, thrust piston and the turbine rotor. This

configuration just met the 25% critical speed margin requirement at the 150,000 design rpm.

Both stages were designed for a resultant specific speed of 811.5 To obtain the necessary stage

head-rise, a tip speed of 1960 fps, slightly less than the 2000 ft/sec tip speed limit with a 3-in.

impeller diameter, was required.

In an effort to obtain higher efficiency through increased specific speed, a three-stage

design was also considered during the design study. Analysis of the three-stage design showed

that this configuration would not be capable of meeting the 25% critical speed margin

requirement at the 150,000 design rpm due to the increased pump length. Only by decreasing

the speed to a level lower than that necessary to yield the same specific speed as the two-stage

pump, could the required critical speed margin be attained. As a result, the three-stage pump
design, being also more complicated, difficult to manufacture and costly than a two-stage

pump, was not given further consideration.
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The impellers for the two-stage fuel pump were scaled from previously proven P&WA

turbopump designs with shrouds added to control leakages. The first-stage impeller excluding

the inducer, was scaled from the first-stage of the 350K fuel pump, a design which demonstrat-

ed 95% hydraulic efficiency with use of shrouds. As a modification for the OTV design, 12

splitter blades were removed due to the small size of the impeller, leaving 6 full blades and 6

long splitter blades. Analysis indicated that this would result in an 8.7% decrease in head
coefficient, which was accounted for in the design as shown in Figure 3-14. The first-stage was

scaled at a flow and head coefficient compatible with the desired specific speed. This results in

only a slight loss of stage efficiency as indicated in Figure 3-15 .
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0.6

i

E 0.5 -
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I I I I I I
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Flow Coefficient - _h

FD 212864

Fuel Pump Ist Stage Impeller Head Coefficient

The second-stage impeller was scaled from the high efficiency second-stage of the

XLR-129 fuel pump in the same manner as the first-stage. Again, the 12 short splitter blades

were removed, resulting in a 10.3% loss in head coefficient as shown in Figure 3-16, leaving 6

full blades and 6 long splitter blades. The second-stage was also scaled at a flow and head

coefficient necessary to obtain the desired specific speed, resulting in a minor efficiency loss as

indicated in Figure 3-17. Both the first and second-stage impellers provide a configuration
with optimum specific diameter as shown in Figure 3-18.
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Radial loads for each stage are found in Table 3-2 for the nominal design, off-design

(O/F=7.0) and pumped idle point. The impellers employ stepped labyrinth seals on the front

and back shrouds at approximately 2 in. seal diameter to minimize leakage recirculations. Each

impeller discharges into a constant velocity, single discharge volute collector followed by a
conical diffuser,

Table 3-2. OTV Impeller Radial Loads

Pumped Idle

O/F = 6.0 -- 10% Thrust

Nominal Design

O/F = 6.0 -- lOOr_i Thrust

0[[ Design

O/F = 7.0- lllC'_ Thrust

Q/N Q/N Q/N

Pump Locat,m Q/Nm. r N FT, No. Q/N_.r N F. t, No. Q/N_.r N F_, No.

Main LOX Pump 0.4 17,631 47.6 1.0 67,390 46.2 1.13 68,709 212.4

Fuel Pump lst-Stage 0.4 39,244 47.1 1.0 150,000 61.7 0.97 152,932 98.2

Fuel Pump 2nd-Stage 0.4 39,244 27.4 1.0 150,000 71.6 0.97 152,932 88.9

The pump configuration includes an inducer on the first-stage impeller to provide the

required suction capability compatible with the fuel boost pump discharge, and ensure

cavitation-free performance of the impeller. Three helical blades and a solidity of 1.5 were

employed in the design providing a suction specific speed capability of 29,200 at an inlet tip
flow coefficient of 0.013 (Figure 3-19).

The overall pump efficiency has been estimated to be 64% establishing a shaft horse

power requirement of 1571. To achieve this efficiency the design will require tight seal

clearances in order to minimize leakage recirculations. At least 80% volumetric efficiency is

required with preliminary estimates indicating that this can be obtained by holding all
diametral seal clearances on the impellers to 0.004 in. Mechanical and hydrodynamic efficien-

cies were estimated at 94% and 85% respectively. Other pertinent design parameters are

tabulated in Table 3-3 . Figure 3-20 shows a preliminary configuration drawing of the OTV

main fuel pump.

3.4.2 Main Oxidizer Pump

The OTV main oxidier pump is a single-stage, shrouded centrifugal turbopump design.

The configuration consists of a three bladed inducer with solidity of 2.0, a shrouded impeller

with 6 full length blades plus 6 long splitters, a constant velocity, single discharge volute

collector, and conical diffuser. The pump impeller, a 25 deg backswept design, and inducer,

have been scaled from the P&WA SSME main LOX pump design modified by a slight

extension in the impeller diameter to obtain the required head rise. Figure 3-18 shows that the

adjusted impeller diameter provides an optimized specific diameter for the design point
specific speed of 1431.

The inducer was designed for a suction specific speed capability of 23,000 as shown in

Figure 3-19. The overall pump efficiency has been estimated at 67.4% establishing a
shaft-horse power requirement of 375. As with the main fuel pump, the lab seal clearances will

require close control to obtain the desired efficiency due to the small impeller size.

A list of pertinent design parameters is provided in Table 3-4 and radial loads in Table

3-2. A configuration sketch of the OTV main LOX pump and turbine drive is shown in Figure
3-21.
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OTV Main Fuel Pump Design

Parameter Units Value

Pump Q gpm 452

N rpm 150,000

AH Pump Overall ft 124,022

W lb/sec 4.46

P, Inlet psia 87.4

P, Outlet psia 3905

P,,,, .... psia 16.5

T, Inlet °R 37.2

p Inlet lb/ft:' 4.432

_-Overall Efficiency % 64

SHP hp 1571

NPSH Inlet ft 2305

TSH ft 90

Inducer N._ Capability -- 29,200

¢IT -- 0,103

D_ in. 1,694

Dm in. 0.593

D r in. 1.694

D, in. 0,971

h Tip Axial Length in 0,452

A, in: 1,698
A in_ 1,423

a-Tip Solidity -- 1.5

Ftr_t-Sta_,(' Impeller Scale Factor -- 0.2258

AH Rotor ft 66,894

AH Stage ft 62,011

(rpm)(gpm)
N, 811.5

fit)
¢_,M Rotor -- 0.561

¢:M Stage -- 0.520

0 _,_,t -- 0.081

U2M ft/sec 1959.8

D_,E in. 1.694

D m in. 0.971

D2T, D__,, D:H in. 2.992

h Mean in. 0.613

A_ in" 1.229

A, in_ 0.914

b2 Exit Blade Height in. 0.1(18

First-Stage Volute _k: de_g 8.22
A_ in. 0.152

D_ in. 0.44

D in. 3.22

Fir,st-Stage DiHuser L in. 1.67

20 deg 9.0
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OTV Main Fuel Pump Design (Continued)

Parameter Units Value

Second-Stage Impeller

.";cc(md-Nta/_,_ Volume

:';cc_md-,_ta_,w Di/luser

Scale Factor -- 0.23254

_H Rotor ft 66,894

_H Stage ft 62,011

(rpm)(gpm)
N_ 811.5

( ft )

¢_,_ Rotor -- 0.576

¢:_t Stage -- 0.534

¢:_1 -- 0.082

U.,sl ft/sec 1934.3

D,.] in. 1.628

Dm in. 1.087

D:r. D:_I, D_,H in. 2.953

h Mean in. 0.307

At in_ 0.822
A in_ 0.915

b. Exit Blade Height in. 0.I10

. deg 8.1

A,, in- 0.15

D_ in. (I.437

D in. 3.177

L in, 1.66

20 deg 9
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OTV Main Oxidizer Pump Design

Parameter Units Value

Pump Q gpm 168.75

N rpm 67,390

AH Pump Overall ft 5,191.0

W Ib/sec 26.76

P, Inlet psia 94.2

P, Outlet psia 2,660.8

P, ,,,., Inlet psia 16.0

T, Inlet °R 164.0

p Inlet Ib/ft _ 71.2

n-Overall Efficiency % 67.4

SHP hp 375

NPSH Inlet ft 158

TSH ft 5

(rpm)(gpm)
Inducer Ns, Capability 23 000

" (ft)

_IT -- 0.133

D_r in. 1.283

D,. in. 0.562

1):_ in. 1.283

D.. in. 0.729

h Tip Axial Hub Length in. 0.646

A: in_ 0.981

A, in_ 0.831

Scale Factor -- 0.1757

a-Tip Solidity -- 2.0

Impeller Scale Factor -- 0.1757

AH Rotor ft 5634.0

AH Stage ft 5191.0

(rpm)(gpm)
Ns 1431

fit)

¢:M Rotor -- 0,472

¢_,M Stage -- 0.435

__'x, -- 0.13

U:_, ft/sec 620.5

D_, I in. 1.283

D m in. 0.729

D_,_, D-x_, D-,u in. 2.11
h Mean in. 0.430

A_ in_ 0.788

A, in! 0.687

b2 Exit Blade Height in. 0.115

Volute a: deg 14.3

Ax in: 0.249

D_ in. 0.282

D:_ in. 2.374

Dif/user L in. 2.14

20 deg 9.0
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3.4.3 Fuel Boost Pump

The fuel boost pump is an unshrouded axial flow, low speed inducer (LSI) type pump,
designed for an inlet NPSH of 15 and 90 ft of TSH. The fuel LSI has been scaled from the
P&WA Seajet 12-1V design to take advantage of its proven test performance. The design
configuration employs three full length cambered blades and three splitter blades followed by
a single discharge constant velocity volute collector with conical diffuser. The shaft is
supported by a 10 mm roller bearing at the front end of the pump and by a 25 mm ball bearing
at the back end.

The suction capability of 30,000 NSS for the fuel LSI design is shown in Figure 3-19 at

its optimum design inlet tip flow coefficient of 0.11. Based on demonstrated Seajet 12-1V

performance and collector loss calculations the overall efficiency of the fuel LSI has been

estimated to be approximately 75%, with a resultant shaft horse power requirement of 25.3.
Other pertinent design parameters are provided in Table 3-5. A preliminary sketch of the

pump assembly is shown in Figure 3-22.

Table 3-5. OTV Fuel LSI Design

Parameter Units Value

.

Volute

Diffuser

Q gpm 457.2

N rpm 46,021

AH Rotor ft 2,600

AH Overall ft 2,340

NPSH Inlet ft 15

TS H ft 90

N_ (rpm)(gpm)
(ft) 2,925

N_ Capability 30,000

¢:M Rotor -- 0.475

¢.,_, Overall -- 0.428

¢l'r 0.11

¢.,_1 -- 0.197

P, Inlet psia 16.2

P, Outlet psia 87.4

W lb/sec 4.46

T Inlet °R 36.8

T Outlet °R 37.2

P,_,,.., Inlet psia 15.74

p Inlet lb/ft :_ 4.38

n Overall % 75

SHP hp 25.3

U :._t ft/sec 419.6

D_ in. 2.217

D j, in. 0.6435

D:, in. 2.357

D:H in. 1.780

h Hub Axial Length in. 1.645

a-Tip Solidity 3.5

AI in: 3.414
• :2

A., m. 1.774

Scale Factor -- 0.4284

a: deg 22.5
Am in: 0.68

D_ in. 0.93

L in. 2.88

20_ deg 10.0
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3.4.4 Oxidizer Boost Pump

The oxidizer boost pump (LOX LSI) is a scaled version of the fuel LSI since it also has

been scaled from the $eajet 12-1V design to take full advantage of its proven test performance.

The LOX LSI is a larger scale design than the fuel LSI to provide the required flowrate and
headrise with 2 ft of inlet NPSH and 5 ft of TSH. The LOX LSI has the same configuration

features as the fuel LSI, employing three full length cambered blades plus three cambered

splitter blades, and a single discharge, constant velocity volute collector with conical diffuser.
The shaft is supported by a 15 mm roller bearing at the front end of the pump and by a 25

mm ball bearing at the back end.

The 30,000 NSS suction capability of the LOX LSI is shown in Figure 3-19 at its
optimum design inlet tip flow coefficient of 0.11. As with fuel LSI design, the overall pump

efficiency was estimated to be approximately 75%, establishing a shaft horsepower require-

ment of 10.1 hp. Table 3-6 shows a listing of other pertinent design parameters for the LOX

LSI. Preliminary sketch of the pump assembly is shown in Figure 3-23.

Table 3-6. OTV Oxidizer LSI Design

Parameter Units Value

Volute

Di[[user

Q gpm 168.5

N rpm 9,946

._H Rotor ft 173.5

AH Overall ft 156.0

NPSH Inlet ft 2.0

TSH ft 5.0

(rpm)(gpm)
N_ 2,925

fit) '

(rpm}(gpra)
N_ Capability 30,000

(ft)

¢-'M Rotor -- 0.475

¢:M Overall -- 0.428

¢rr -- 0,II

¢,_) -- 0.197

P, Inlet psia 17.0

P, Outlet psia 94.2

W lb/sec 26.76

T Inlet °R 162.7

T Outlet °R 164.0

P_ Inlet psia 16.0

p Inlet lb/ft :_ 71.3

Overall % 75

SHP hp 10.1

U__ ft/sec 108.4

D,.) in. 2.650

Dm in. 0.769

D:,r in. 2.817

D2H in. 2.127

h Hub Axial Length in. 1.966

o-Tip Solidity --:, 3.5

AI in: 4.874

A_ in_ 2.537

Scale Factor -- 0.512

a, de_g 22.5
A_ in: 0.97

D_. in. 1.11

L in. 3.45

20 deg 10.0
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3.4.5 Fuel Turbine

The fuel pump drive turbine is an axial flow, full admission, single stage design deriving

its power from the expansion of the heated hydrogen propellent used to cool the thrust

chamber/nozzle. A low reaction blade design was chosen to minimize axial thrust loads. A

parametric study was used to size the turbine for maximum performance as shown in Figure
3-24. A maximum turbine rim speed of 1700 ft/sec was set as a limit, as being within but near

the limits of design experience. This resulted in a turbine efficiency slightly below the

maximum attainable, but the 1 to 2% increase in available efficiency was judged not worth the

possible structural problems resulting from a higher rim speed.
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Figure 3-24. OTV Fuel Turbine Parametric Sizing Study

The fuel turbine develops 1630 hp at the design point with a total to static pressure ratio

of 1.562 and an efficiency of 71.2%. The turbine design point is at 100% thrust and mixture

ratio of 6.0. Table 3-7 presents the turbine design point operating conditions.

The fuel turbine elevation is shown in Figure 3-25. The axial chord lengths for the vanes

and blades were set at 0.29 in. and 0.30 in., respectively. These were selected as being the

smallest allowable to minimize aerodynamic losses of each airfoil. For a given height, small

chords yield high aspect ratios, which in turn maintain low airfoil end losses. A blade radial tip

clearance of 0.01 in. is required to achieve the design efficiency for the fuel turbine.
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Table 3-7. Advanced Expander Cycle Engine Fuel

Turbine Operating Conditions at De-

sign Point

Rotor Speed, rpm

Rim Velocity, ft/sec

Tip Velocity, ft/sec

Velocity Ratio

Flow Rate, Ib/sec

Inlet Temperature, °R

Inlet Pressure. psia

Efficiency, %

Pressure Ratio

Power, hp

Reaction %

Tip C_earance, in.

Number Vanes

Number Blades

Vane Axial Chord, in.

Blade Axial Chord, in.

Vane Inlet Angle, deg

Blade Inlet Angle, deg

Vane Exit Angle, deg

Blade Exit Angle, deg

Mean Diameter, in.

AN:

150,000

1,686

1,932

0.449

4.203

859

3,144

71.2

1.565

1,628

13

0.01

13

34

0.29

O.3O

9O

26.3

13.4

17.8

2.76

304 _ 10"

d
I

<D

1.7(

1.25

1.0

1.53

'1
I
t

1.303
I

13 Vanes
34 Blades

1.288
I

0 0.5

Axial Distance - in.

Figure 3-25. OTV Expander Cycle Fuel Turbine Elevation
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3.4.6 Oxidizer Turbine

The oxidizer pump drive turbine is an axial flow, full admission, single stage design

placed in series with the fuel turbine, therefore utilizing the same driving fluid. This turbine is

also used to drive the fuel and oxidizer low speed inducers through a gearing system. As with
the fuel turbine, a low reaction blade design was chosen to minimize axial thrust loads, and a

parametric study was used to size the turbine for maximum performance as shown in Figure
3-26. However, unlike the fuel turbine, the oxidizer turbine, rim speed (1000ft/sec) was well

below the chosen limit value of 1700 ft/sec allowing the maximum attainable efficiency to be

achieved., A comparison of the Advanced Expander Cycle engine fuel and oxidizer turbine

efficiencies with past P&WA designs is shown in Figure 3-27, indicating the design efficiencies

are consistent with previously achieved levels.

Table 3-8 presents the oxidizer turbine design point operating conditions, and an
elevation schematic is shown in Figure 3-28. The oxidizer turbine requires a blade radial tip

clearance of 0.01 in. to achieve the design efficiency.
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Figure 3-26. OTV Oxidizer Parametric Turbine Sizing Study
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Table 3-8. Advanced Expander Cycle Engine Ox-

idizer Turbine Operating Conditions at

Design Point

Rotor Speed, rpm 66,000

Rim Velocity, ft/sec 1,001

Tip Veh)city, ft/see 1,207

Velocity Ratio

Flow Rate, lb/sec 4.203

Inlet Temperature, °R 788

Inlet Pressure, psia 1,955

Efficiency. '7, 7;5.7

Pressure Ratio 1.103

Power, hp 359

Reaction % 19

Tip Clearance, in. 0.01

Number Vanes 18

Number Blades 42

Vane Axial Chord, in. 0.29

Blade Axial Chord, in. 0.30

Vane Inlet Angle, deg 75

Blade Inlet Angle, deg 30

Vane Exit Angle, deg - 13

Blade Exit Angle, deg 18

Mean Diameter, in. 3.76
AN-' 169 × I0 s

f
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SECTION 4

COMPONENT MECHANICAL DESIGN

4.1 THRUST CHAMBER/NOZZLE ASSEMBLY

The performance requirements set down for the Advanced Expander Cycle engine calls
for an advanced technology thrust chamber/nozzle assembly design to ensure combustion

efficiency and stability during steady-state and transient operation. The results of per-

formance, heat transfer, and structural assessments were culminated in a mechanical design
layout, where the analytical studies were traded against fabrication, component geometry, and

weight requirements. The thrust chamber/nozzle assembly consists of four major components:

1) the injector, 2) The nontubular, regeneratively-cooled thrust chamber, 3) the tubular
regeneratively-cooled nozzle, and 4) the radiation-cooled carbon-carbon extendible nozzle. A

layout of the thrust chamber/nozzle assembly is presented in Figure 4-1 and a mechanical

description of each component follows.

4.1.1 Injector

The propellant injector is schematically depicted in Figure 4-2 . The function of the

propellant injector is to atomize the oxidizer and thoroughly mix fuel and.oxidizer to provide

the correct conditions necessary for efficient combustion. The propellant injector consists of

multiple injection elements arranged in a hexagonal pattern around a central torch igniter,

each element consisting of an oxidizer tube and a concentric fuel orifice. Liquid oxygen enters

the injector through the oxidizer injector manifold, flows into the injector cavity and out
oxidizer orifices into the combustion chamber. The oxidizer is admitted to the injector element

through three tangential slots swirling the oxidizer flow and promoting mixing with hydrogen

flow at the end of the element. The outer oxidizer elements of the injector are scarfed at a 45

deg angle to prevent oxidizer impingement on the wall.

Gasous hydrogen enters the peripheral fuel injector manifold and flows into the injector

cavity. The fuel cavity has a 0.5 in. height between the back of the injector faceplate and

oxidizer cavity to minimize static pressure drop across the cavity, providing fuel flow

uniformity. Most of the hydrogen flows out through the annular orifices around each oxidizer
element. The full annular design of the fuel orifices is preferred for uniform distribution. It has

extremely close tolerances and, since concentricity must be maintained, it may be necessary to

insert 3 tangs into the annulus to preserve that concentricity. Approximately 5% of the fuel

flow passes out into the combustion chamber through a porous-weld, steel-mesh plate

(Rigimesh). This flow provides transpiration cooling of the injector face during engine

operation.

Immediate contact between oxidizer and fuel is made at each element as the propellants

leave the injector face and enter the combustion chamber. This configuration is designed to
provide thorough combustion, high combustion efficiency, and high specific impulse.

Thrust chamber ignition is provided by a torch igniter system as shown in Figure 4-3.

The igniter is centrally located in the injector face. A metered flow of hydrogen and oxygen is

mixed in an igniter chamber, ignited by a spark, and passed into the combustion chamber to

ignite the main propellants. Increased reliability is accomplished by providing dual exciters

and spark igniters and, with continuous operation, by eliminating the need for igniter

propellant shutoff valves. The dual spark and exciter configuration provides a fail-safe energy

source and designing the igniter to operate at rated thrust with oxidizer and fuel igniter flows
eliminates the possibility of igniter damage due to valve leakage.
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Figure 4-3.. Advanced Expander Cycle Engine Igniter Assembly
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The fuel and oxidizerisignitedby a spark exciterassembly which provides a minimum of

20 sparks/sec at an energy levelof 0.1joules.The totaloxidizerflow isinjectedinto the igniter

through two tangential entry swirlelements located at the upper end of the igniterchamber.

Fuel flow issplit;part of the flow isdelivered to a concentric slotsurrounding each oxidizer

injector element and the remainder is used for igniter barrel cooling, flowing through a

rigimesh liner.The burned propellants are discharged into the main chamber through the

igniterinjectorsleeve.

4.1.2 Thrust Chamber

The thrust chamber has a one-piece copper alloy liner. The heat fluxes experienced by

the chamber are high and require the use of a high thermal conductivity material such as

copper. The thermal fatigue properties of pure copper can be improved with only a slight

reduction in conductivity by alloying with small amounts of other metals. The alloy selected
for this design was AMZIRC, an oxygen-free copper alloy containing 0.15% zirconium. The

AMZIRC is obtained as a forging and cold-worked by spinning to rough shape on a mandrel to

increase strength. After spinning, the ID surface is final machined and 80 coolant channels are

machined or EDM in the OD. The passages are filled with an electrically conductive wax and a

thin copper layer is electrodeposited on top. A nickel outer shell is electroformed over the

milled liner to provide structual integrity to the cooling passages. The thin copper layer acts as

a protective barrier between the hydrogen coolant and the nickel shell to alleviate possible

property-reducing hydrogen embrittlement of the nickel, Finally, the wax is removed, leaving

the chamber with cooling passages.

Thrust chamber low-cycle fatigue {LCF) life is a major consideration in the selection of

an engine operating point. The LCF of the regeneratively cooled thrust chamber results from

the large thermal strains that are introduced between the heated inner wall of the chamber

and the cooler outer structural wall, The problem of evaluating thrust chamber LCF life

capability has been approached by: 1) identifying the critical locations in the thrust chamber

for analysis, 2) determining the LCF life capability at those locations, and 3) making
modifications to the chamber geometry and/or engine operation to ensure that the life

requirements have been met.

A LCF analysis of the thrust chamber showed that the minimum life occurs at the throat

and was calculated to be 190 cycles using !_ hard AMZIRC fatigue properties. The OTV
mission requirement is 1200 cycles (300 cycles with a safety factor of 4). The analysis made

used a square passage geometry for the coolant channels. A domed passage geometry, shown in

Figure 4-4, was then considered as a means of reducing the pressure bending stresses and
increasing the flexibility to lower thermal stresses. The calculated life for the improved

configuration analyzed was 760 cycles. Incremental load data from a MARC plastic finite

element analysis indicates that lowering the hot-wall temperature by approximately 80 deg

would result in 1200 cycles life with _2 hard AMZIRC. Based on limited LCF data available,

using aged AMZIRC instead of !/,2 hard AMZIRC could increase the predicted life by more

than a factor of 3 (_ 2500 cycles).

4.1.3 Tubular Nozzle

The tubular regeneratively-cooled nozzle is identical in concept to the tubular nozzle used

on the RL10 production engine. It consists of a pass-and-a-half heat exchanger made up of 180

long and 180 short tubes extending from the end of the nontubular section at _ = 6 to the start
of the radiation-cooled nozzle at e = 210. The tube split, required to accommodate the change
in circumference while providing tube cross section.s consistent with cooling requirements and

fabrication limitations, is at an area ratio of 60:1. Flow is from the transition manifold at e = 6,

parallel to the combustion gases through the long tubes, to a turnaround manifold at _ = 210,

and then through the short tubes, counterflow, to the exit manifold at _ = 60.
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Alloy PWA 770 (347SST) was selected as the tube material. Both full-length and short
tubes are furnace brazed together to form a seal and are structually supported by stiffener

bands to carry the chamber hoop loads and minimize the effect of any flow-induced vibration.

To establish band locations, tubes are treated analytically as beams subjected to thermal stress

by the hot-cold wall temperature differential and from nozzle static wall temperature differen-

tial and bending stress from nozzle static wall pressure; logitudinal loads due to thrust,

maneuver loads, and gimballing acceleration are also considered. Bands are placed to establish

beam lengths, which limit tube stresses to a level below the material yield strength at a factor

of safety of 1.1.

4.1.4 Nozzle Extension

The nozzle extension is radiation cooled, and made of a lightweight carbon-carbon

composite. This composite is capable of withstanding high temperatures and is currently being

developed for gas turbine engine components such as augmentor cases and nozzle flaps.

The nozzle extension actuation system (Figure 4-5) is identical to the one used for

Category IV Derivative Engine. The extendible nozzle is translated by means of a jackscrew

actuation system, The translating structure consists of three ballscrew jackshafts which are
attached on the rear of the primary nozzle by individual drive gearbox and bearing assemblies,

and are supported at their forward end by an adjustable link. The ballscrew shaft is supported

on antifriction bearings at both the front and rear locations. These ball bearings, which take

axial and radial loads, are housed in a spherical ball joint that compensates for shaft

misalignment as great as 2 deg.

The nozzle drive/syncronization system consists of two electric motors and three in-

terconnecting flexible cables which transmit motor torque to three gear transmissions which

drive the ballscrew shafts. A locking mechanism at the base of one ballscrew assembly locks

the nozzle in either the extended or retracted position The lock is a springloaded normally
locked mechanism.
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Figure 4-5. Nozzle Translation System

A spline is added to the cable at the lock location so that engaging the spline stops the

travel. The engagement is ensured by dual helical springs loading the spline locks. When

electric power is supplied to the drive motor, the electric solenoids within the lock are

energized and movement of the solenoid rotates the cam, and depresses the cam follower and

springs within the lock mechanism. This disengages the spline lock and allows the drive shaft

to rotate. The fixed spline lock is always the first to engage and it moves with the shaft pulling

the floating spline into the locked position. Rotation torque is taken out by the spline lock

pivot pin. The redundant lock solenoids are actuated during nozzle translation only.

The nozzle is attached to the translating mechanism at three equally spaced points
through a nozzle attachment bracket to the ballscrew. The nozzle attachment bracket consists

of a split circular ring and two piece yoke. The ballnut gimbal attachment bracket provides 2

degrees of t'reedom to prevent transferring bending loads from the nozzle attachment bracket
to the ballnut.

The extendible nozzle seal is cooled by the turbopump gearbox hydrogen. The ballscrew

rods may be made from carbon-carbon composite.

4.2 HEAT EXCHANGERS

The heat exchangers (gaseous oxygen and hydrogen regenerator) are composed of plates

with grooves etched on one side, stacked and brazed together with manifolds brazed on each of

the ends. The heat exchanger plates alternately contain hydrogen and oxygen, in a cross flow

configuration. Both hydrogen and oxygen plates in the GOX HEX and the hot and cold

hydrogen plates in the hydrogen regenerator, are the same except for the direction in which

the fluid passages (grooves) are etched. The core of the heat exchanger is based on laser mirror

heat exchanger designs. The heat exchangers are made of aluminum (manifolds and core) to

minimize weight. However, development of an aluminum braze that would not plug the fluid
passages is required.
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The GOX heat exchanger manifold required internalstructuralreenforcing webs due to

the high internal and long unsupported manifold span on the hydrogen side.An additional

oxygen outlet was incorporated into the HEX to provide gaseous oxygen for tank pressur-

ization.The tank pressurization outlet is to have its own dedicated portion of the heat

exchanger within the GOX HEX in order to provide the required state of oxygen for tank

pressurization.However, the heat exchanger layout does not reflectthisbecause this additional

outlet was not known to be required until the design of the HEX was completed and the

schedule did not permit a redesign.

A vortex prevaporizer was designed and placed upstream, on the oxygen side of the GOX

heat exchanger. The design is of a concentric tube configuration with LOX entering the inner
tube tangentially. An outer jacket of hot hydrogen gas heats the liquid oxygen. The light

oxygen gas goes to the center of the tube, while the heavy liquid remains at the OD due to the

centrifugal force. Radial fins at the inner tubes exit changes the tangential flow into an axial

flow direction. This configuration provides a gradual phase change of oxygen from the liquid to

approximately 20% quality condition to prevent instability problems.

4.3 TURBOPUMPS

4.3.1 Mechanical Description

The fuel and oxidizer main pumps and low speed inducers comprise the turbopump
assembly (Figure 4-6). The pumps are driven by two single stage turbines, a turbine on both

main pump shafts. The low speed inducers are gear driven off the oxidizer pump shaft. A

syncronizing gear has been included between the fuel and oxidizer main pump shafts to
simplify the control system.

Fuel Low Speed Oxidizer

Main Fuel Induc( Turbopump

Turbopump-_r

_-Oxidizer Low Speed

nducer

I

_ j
J

Figure 4-6. Turbopump Assembly
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The fuel pump is a two- stage centrifugal design driven by a single stage turbine. The

impellers, arranged back-to-back, are made of titanium and have diffusion bonded shrouds.

The impellers and turbine disk are splined onto the shaft which transmits the torque. The

pump housing is made of AMS 4215 aluminum (casting). The housing contains the two

circumferential volute diffusers, each having a single conical discharge. The shaft is supported

by two 20mm roller bearings, one located between the two impellers and the other one

immediately forward of the turbine disk. The bearings are hydrogen cooled and the aft bearing

may be jetted with hydrogen if additional cooling is required. A bearing DN of 3.0 × lff is

obtained with the fuel pump speed of 150,000 rpm. A bearing DN of 2.64 × 10' was run in the

XLR 129 fuel pump. Some development is required to design and manufacture a roller bearing
that is reliable at this operational parameter. Tiebolts fore and aft on shaft maintain a preload

on the impellers, bearings and turbine. A double acting thrust piston has been incorporated

onto the shaft to restrain the shaft thrust load. The piston is fed 2nd-stage impeller discharge

pressure to each side. The resultant thrust is in the forward direction thereby allowing the aft

piston pressure feed to be channeled back to the 2nd-stage inlet. The thrust piston lands rub

against leaded bronze inserts in the pump housing. This piston configuration is similar to the

one used in the XLR-129 fuel pump. A controlled gap carbon circumferential seal is used to

prevent the thrust piston, high-pressure hydrogen, from entering the gearbox cavity. The

pump has the capability of being high speed balanced as an assembly by the insertion ¢;f

cylindrical weights into holes predrilled on the forward side of the impeller shroud and the aft
side c_f the turbine disk.

The oxidizer pump incorporates several of the same features as the fuel pump (assembly

balancing capability, single-stage turbine, volute diffuser). The single stage shrouded cen-

trifugal design is driven by a single-stage hydrogen turbine. The shaft axial thrust load ( 200

lb) is restrained by a 25 mm ball bearing located just aft of the impeller. A 25 mm roller

bearing is located on the aft portion of the shaft. The ball bearing is cooled by L0X while the

aft roller bearing is cooled by hydrogen. A contolled gap, multiple vented cavity arrangement

was used to prevent mixing of the hydrogen and oxygen.

Both fuel and oxidizer low speed inducers are axial flow with three blades and three

splitters. The inducers have an axial volute diffuser with a single discharge. The inducers are
gear driven off the oxidizer pump shaft. A roller bearing has been placed under the inducer

and a ball bearing just forward of the gear. The inducers are made of AMS 5362 SST. The

oxidizer low speed inducer contains the basic seal design as the RL10 LOX pump,

The hydrogen flow to the two turbines is arranged in series, with the fuel pump turbine

being upstream of the oxidizer turbine. The turbopump gears are encased in a one piece

aluminum casting gearbox. The one piece gearbox minimizes gear misalignment by allowing
the bearing races and mounting surfaces to be matched with a minimum of overall tolerances.

The sychronizing gear and oxidizer-pump-to-fuel-low-speed-inducer idler gear have a single
roller bearing to minimize misalignment. The gear teeth will be dry film lubricated with PWA

550. Spur gears, made of AMS 6265, are used exclusively with a diametral pitch of 18 and

pitch line velocity of 39,300 ft per min. The gear train is lightly loaded and therefore can

operate successfully at this high pitch line velocity.

The gears are cooled by the gaseous hydrogen that flows through the gearbox and is then

used to cool the seal for the extendable nozzle. If it is determined that additional cooling is

required, liquid hydrogen can be jetted onto the teeth. A Hertz stress of 100,000 psi has been

used to determine the gear teeth configurations. A reduction idler gear was needed between

the oxidizer pump and oxidizer LSI to reduce the speed from 67,390 rpm to 9950 rpm. A list of
the selected turbopump materials is presented in Table 4-1.
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Table 4-I. Turbopump Materials

Itnpelh_r (Hydrogen)

Impeller (Oxygen)

I,ow Speed Inducers

Shafl_

Turbine Disks

Housings

(;ears

Bearin_zs

-- Titanium (A-I10) AMS 4924

-_ Nickel Alloy (Incc> 718) PWA 1010

-- Stainless Steel AMS 5362

-- Nickel Alloy (lnco X-750_ AMS 5667

-- GATORIZED _ nickel alloy (IN-100) PWA 1073

-- Aluminum (C355) AMS 4215

-- Carburizing Steel AMS 6265

-- Stainless Steel AMS 5630

4.3.2 Critical Speed and Bearing Loads

The performance goals of the OTV program necessitate state-of-the-art components. The
resulting turbomachinery contains lightweight, high speed rotors. Table 4-2 summarizes the

various pump rotor weights and maximum operating speeds. Rotor dynamics analyses of the
main fuel pump, main oxidizer pump, fuel low speed inducer, and oxidizer low speed inducer
predict acceptable margins over the maximum operating speeds as shown in Figure 4-7. For
this design, acceptable critical speed margins were defined as a 15% margin over maximum
operating speed for modes with less than 25% rotor strain energy and a 25% margin over
maximum operating speed for modes with more than 25% rotor strain energy. These criteria
require careful rotor design and multiplane balancing during final pump design.

The turbopump ball and roller beaings were evaluated using Jones II Bearing Analysis
Deck (A926). A life factor of one (1X) was used for both ball and roller bearings. The 100 hr
design life includes a 10% reliability factor used for cryogenic applications. The dynamic
bearing loads (Figures 4-8 and 4-9) were calculated by assuming unbalances equal to the
weight of the impellers and turbine disks offset 0.001 in. from the rotor centerline, with phase
relationships that produce the maximum bearing load. The analysis revealed that the ball and
roller bearings for the fuel LSI pump, oxidizer pump, and oxidizer LSI pump will reach 100-hr
life if the bearings have the geometry indicated in Figures 4-10 through 4-15. Table 4-3
summarizes the maximum loads allowable to obtain the 100-hr fatigue life at the condition
noted. The fuel pump roller beaings will not reach a life of 100 hrs unless silicon nitride
elements are used instead of steel elements. The use and manufacture of silicon nitride roller

bearings was demonstrated during a high speed roller bearing test program conducted at
Orenda Ltd. in 1973. Table 4-4 exemplifies the centrifugal force effect of steel and silicon
nitride on the fatigue life of a bearing at 3 × lff DN. A bore reduction to 18 mm from 20 mm
would proved the 100 hr fatigue life for the silicon nitride roller bearings at 150,000 rpm for
the fuel pump roller bearings. Decreasing the pump speed to 147,000 rpm will provide the

required 100 hr fatigue life for 20 mm bearings. Since the design point operating speed of the
fuel turbopump is 147,000 rpm the life requirment was met although with no excessive margin.

Table 4-2. Turbomachinery Rotor Weights and Operat-
ing Speeds

Rotor Weight Maximum Operating

Pump lb Speed (rpm)

Main Fuel Pump 2.24 150,000

Main Oxidizer Pump 2.98 67,39_)

Fuel Low Speed Indu. 1.90 46,021

Oxidizer 4_ow Speed Inducer 2:16 8,850

- 107



o

.u_c

N

X_
0

CL
E

n

LL

Pratt & Whitney Aircraft Group
FR-14615

Volume II

e-

"O

Q.
(D

O
.J

tl.

J

o
oo o o o c)

%-_6Jau3 u!eJl£ Jo;ol=l

108

o o
o4

o

o

o



Pratt & Whitney Aircraft Group

FR-14615

Volume II

100 --

8O

r_

' 60
c0
O

O

E
cO

_, 40

2O

/
Turbine Bearing /

impeller Bea(rilal I Bearing) "__/

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Pump Speed - rpm

FD 212884

Figure 4-8. Oxidizer Pump Dynamic Bearing Loads
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Figure 4-13. LOX Pump Roller Bearing Characteristics
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Table 4-3. Bearings Summary -- Conditions Resulting in 100 hr Fatigue Life

Bearing Type Bore Max Load Springrate Life

Pump And Position Size (MM) Speed (tbD (lb/in.) (hr)

Fuel Low Speed Roller 12 0.55 x 10 _ DN 245 780,000 100

Inducer (LSI) Pump (Front) 46,021 rpm Radial

Fuel LSI Pump Ball 25 1.15 x 10 _ DN 295 610,000 100

(Rear) 46,021 rpm Thrust

Oxidizer Pump Ball 25 1.68 x 10_ DN 255 400,000 100

(Front) 67,390 rpm Thrust

Oxidizer Pump Roller 25 1.68 x 10 _ DN 325 1,400,000 100

(Rear) 67,390rpm Radial

OxidizerLSI Pump Roller 20 0.2 × I0_ DN 580 1,400,000 I00

{Front) 9946 rpm Radial

Oxidizer LSI Pump Ball 20 0.2 × 10 _ DN 415 880,000 100

(Rear) 9946 rpm Thrust

Table 4-4. Comparison of the Centrifugal Effect of
Steel and SijY, Elements on Bearing Life
at 3.0 x 10_ DN

Bearing Type Bore Load Life
and Position Size (MM) Speed (lbD (hr)

Roller (Front) 20 3.0 x 10 _ DN 103 45

Steel Elements 150,000 rpm

Roller (Front)* 20 3.0 x 10 _ DN 103 93

Si_N_ Elements 150,000 rpm

Roller (Rear) 20 3.0 x 10 _ DN 116 43

Steel Elements 150,000 rpm

Roller (Rear)* 20 3.0 x 106 DN 116 81

Si_N_ Elements 150,000 rpm

*A bore reduction from 20 mm to 18 mm was required to obtain

100 hr fatigue life. This results in 2.7 x 10 s DN at 150,000 rpm.

4.4 ENGINE CONTROL VALVES

The location of the Advanced Expander Cycle Engine valves are shown in Figure 4-16.
Several of these valves are similar to the ones used in the RL10 engine, (ie., the propellant
inlet shut-off valves, main fuel shut-off valve, and the solenoid valves).

The propellant pressurization valves (Figure 4-17) are spring loaded, normally closed, line
pressure actuated, two-position poppet valves that supply propellants for fuel and oxidizer

tank pressurization. These valves limit but do not regulate the tank pressurization flowrate.
When the differential between line pressure and an internal cavity vented to pump inlet
pressure increases to a predetermined value, the total force acting on the poppet overcomes
the spring load and the valve opens fully.

A_
117



Pratt & Whitney Aircraft Group
FR-14615

Volume II

r_

O

U.

e,o
0

- 118



Pratt & Whitney Aircraft Group

FR-14615

Volume II

Outlet

• Normally closed

• Flow pressure operated

• Spring actuated

• Two position poppet
Vented

to Pump
Inlet

FD 212892

Figure 4-17. Fuel and Oxidizer Propellent Pressurization Valves

The oxidizer flow control valve (Figure 4-18) is a spring-loaded, normally closed, line

pressure actuated valve. It is similar to the one used on the RL10 except that the propellant

utilization portion has been eliminated for the OTV engine. It is configured to provide ground

trim of full thrust propellant mixture ratio. The valve contains a spring-loaded poppet valve

used to meter oxidizer flow during full thrust and regulate flow during the engine transient to

full thrust. The poppet valve is spring-loaded closed and opens as a function of the pressure

differential between valve inlet pressure and a pressure within the valve cavity which has been

vented to pump inlet pressure. During tank head idle and pumped idle operation, the poppet

is closed and liquid oxidizer is not allowed to enter the injector. When the engine accelerates

from pumped idle to full thrust operation, the main poppet valve is also opened as a function
of the differential pressure between valve inlet and pump inlet pressure. The bypass and main

poppet valves both remain open during full thrust operation and the combined areas meter the

requred oxidizer flow. The full open position of the main poppet valve can be ground trimmed

by a threaded mechanical stop to ground adjust engine mixture ratio.

• Normally closed

• Flow _P operated

• Spring Actuated
• Variable position

poppet

[-- Inlet Poppet

J_... Stop Adjustment

........_ _____ -T Flow

v::_.., ,n,e,Po00e,
to Oxidizer Pump Inlet
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Figure 4-18. Oxidizer Flow Control Valve
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The propellant inlet shut-off valves (Figure 4-19) are spring loaded, normally closed,

helium operated, two position ball valves that provide a seal between the vehicle propellant

tank and the engine pumps. Both valves are located just upstream of their respective pump
inlets and are of the same respective diameter as the fuel and oxidizer pump inlets. The valves

are actuated by helium operating on a piston bellows assembly. The linear motion of the

actuator is translated by rack and pinion into a rotary motion at the ball valve. Ball sealing is

accomplished with dual pressure loaded fluorocarbon rub seals. The valves incorporate a

vented cavity between the dual seals such that any leakage past the closed valve is vented
overboard.

/-- Helium Actuation

_/.,f for Engine Start
.J

Flow 7• Normally closed _-
• Helium operated _-_

• Bellows actuated -_-:-:

• Two position
ball valve

i_ _

m. J_ _ '__

C DO _ _D

--_ C-C

FD 212894

Figure 4-19. Fuel and Oxidizer Propellant Inlet Shut-Off Valves

The main fuel shut-off valve (Figure 4-20) is a helium operated, two position, normally

closed annular gate valve. The valve serves to prevent the flow of fuel through the fuel pump

turbine during tank head idle operation and provides a rapid cutoff of fuel flow to the

combustion chamber at engine shutdown. The shutoff gate is opened by helium pressurization

of a bellows assembly to allow the flow of fuel through the turbine at the operating modes

above tank head idle. The compressed shut off valve spring returns the gate to its normally

closed position when helium pressure is vented at engine shutdown. Sealing is accomplished by
the sealing of the spherical surface of the gate seal ring.

• Normally closed

• Helium operated
• Spring actuated

• Two position

annular gate

Helium Actuation--_

Flow -_

L

FD 212895

Figure 4-20. Main Fuel Shut-Off Valve
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The gaseous oxidizer valve (Figure 4-21) is a spring loaded, normally open, pressure

actuated sleeve valve located between the GOX heat exchanger and the injector.This valve

meters gaseous oxygen flow during tank head and pumped idleoperation and regulatesoxygen

flow during the transient to pumped idle.In the tank head idle mode, the valve is normally

partiallyopened to a predetermined position to meet the required oxidizer flow. The sleeve

valve isopened fullyduring the pumped idle mode by the increase in oxidizer line pressure

acting on the face of the sleevewhich compresses the spring within the sleeve/pistonassembly.

During the fullthrust operation the valve isclosed,actuated by the oxidizer pump discharge

pressure acting on the piston of the sleeve/pistonassembly.

Flow
In

Overboard Vent

Tank Head Idle

Ground Adjustment

I
l FIow J

Spring-A

_-B

Oxidizer

Solenoid

Valve

Overboard

Vent

1.Tank Head Idle Setting (as drawn). Solenoid valve is closed. Valve flow path pressure insufficient to

compress spring-A.

2.Pumped Idle Setting. Solenoid valve is closed. Valve flow path pressure sufficient to compress

spring-A (valve opens farther than shown).

3.Transient from Pumped Idle to Full Thrust. Solenoid valve opens. As valve pressure increases, valve

closes. (Function of spring-B spring rate.) Valve is fully closed above thrust levels of about 30% of
rated thrust.

FD 212896

Figure 4-21. Gaseous Oxidizer Valve
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The main fuelcontrol valve (Figure 4-22) provides the control functions ofturbine bypass

flow for thrust regulation,ventage of fuel at shutdown, and provides fuel flow to hydrogen

regenerator during tank head idle operation. The thrust control portion of the valve is a

normally closed,helium and hydrogen pressure actuated, three position sleeve bypass valve

used to control engine thrust by regulation of turbine power. Control of engine thrust is

provided at full thrust by a ground adjusted needle valve which allows approximately 4%

hydrogen flow to bypass the closed sleevevalve and therefore bypass the turbines.Itshould be

noted that a continuous feedback of chamber pressure vs bypass flow as used in the RL10, has

not been incorporated into thisengine design.It was determined that thrust variance without

this feedback system was acceptable for the OTV application.The valve is also pressure

actuated to allow the settingof two discreteareas for metering turbine bypass hydrogen flow

during tank head and pumped idle operation. During tank head idle operation, the valve is

actuated to fullopen position by helium pressure action on the concentric (annular) piston

assembly. During pumped idle operation the valve is actuated to an intermediate area by

gaseous hydrogen acting on a secondary concentric piston as the annular helium piston is

vented. Holes are provided through the valve'ssleeve face to maintain hydrogen pressure on

both sides of the face,in order to reduce the spring load required to move the valve from the

fullopen to the intermediate position.

The fuel vent portion of the main fuel control is a pressure operated, two-position poppet

valve that is spring loaded open to provide pressure relief of the fuel system lines during

engine shutdown. The valve is maintained in the closed position during all three active modes

of engine operation. At the start signal, helium pressure actuates the valve assembly, moving

the valve to close the overboard vent port. At shutdown, when helium pressure is removed, the

vent port opens fully relieving fuel pressure in the fuel system lines.

The hydrogen regenerator flow portion of the main fuel control is a pressure operated,

two-position, poppet valve that is spring loaded, normally closed. At the start (SOV1) signal

for tank head idle operation, helium pressure actuates the valve assembly, moving the poppet
to the full open position thereby providing hydrogen flow to the hydrogen regenerator. The

valve is maintained in the closed position for the pumped idle and full thrust modes of engine

operation.

The solenoid valves (Figure 4-23) are solenoid actuated, direct acting, 3-way valves with

doub]e-ended poppets that supply helium, hydrogen or oxygen actuation pressure to the

various propellant valves. The five solenoid valves used in the OTV engine are identical in

design and function. The start solenoid valve controls the actuator helium supply to the fuel
shut-off valve. Bypass solenoid valve No. l controls the actuator helium supply to the turbine

bypass valve and hydrogen regenerator flow valve, both on the main fuel control, for tank head

idle operation. Bypass solenoid valve No. 2 controls the actuator hydrogen supply to the

turbine bypass valve for pumped idle operation. The oxidizer solenoid valve controls the

actuator oxidizer supply to the gaseous oxidizer valve, for full thrust operation.

4.5 ENGINE WEIGHT

The estimated weights of the various Advanced Expander Cycle engine components are
shown in Table 4-5.
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!

Overboard

Vent

Start

Solenoid

Valve

Overboard m

Vent ju

_Turbine

Bypass

r Spring-A
I

Spring-B

Bypass
Solenoid L._._J

Valve No.

2

Helium _ O_ernb°ard[_ I

Fuel - ---==--

Bypass Solenoid Valve No. 1

Off

Tank Head Idle

Pumped Idle

Full Thrust

All solenoid valves Closed. Valve in positions shown. Turbine bypass through needle

valve only. No flow to the regenerator. Overboard vent valve open. (Fail safe position)

Bypass solenoid valve No. 1 open, No. 2 closed. Start solenoid valve open. Turbine

bypass open (springs A and B compressed). Flow to regenerator. Overboard vent
valve closed.

Bypass solenoid valve No. 1 closed, No. 2 open. Start solenoid valve open. Turbine

bypass is a function of valve inlet pressure and spring-B (spring-A is not

compressed). No flow to regenerator. Overboard vent valve closed.

Bypass solenoid valves No. 1 and No. 2 closed. Start solenoid valve open. Turbine

bypass through needle valve only. No flow to regenerator. Overboard vent valve
closed.

Figure 4-22. Main Fuel Valve
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Port B-- /-- Overboard
/ Vent

Supply \ "
Pressure-_ _ / /-Solenoid

i Normally closed _. _ J P'

Electrically operated I-_'_ _:.,_ rc_

Spring actuated tf°_l Ib

Two position- double ii-_.__1 I_

ended poppet _/-_ _ I)

Port A -J _.. To Signal Pressure
Switch and

Appropriate System
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Figure 4-23. Solenoid Valves

Table 4-5. Estimated Weights -- Advanced Expander Cycle En-

gine Components

Item Material Weight. lb

Primary Nozzle Assy

Cooling Tubes
Thrust Chamber

Primary to Secondary Seal

Secondary Nozzle Assy
Nozzle shell

Nozzle Supports

Screw Jacks and Actuation

Screw Jacks

Bearings& Housings

Gear Drive & Drive Motor

Gimbal Mount

Turbo Pump Assy

Heat Exchangers

H: Regenerator

Vortex Prevaporizer

GOX Heat Exchanger

Control Valves

Plumbing & Misc

Total

347 SST 31.0

347 SST, N-155 RigiMesh, Amzirc 58.1
347 SST 12.0

Uncoated Carbon/Carbon 60,2

Uncoated Carbon/Carbon 8.8

Uncoated Carbon/Carbon 7.7
347 SST 6.9

347 SST 5.9

A] Alloy 4.0

Ai Alloy, 347 SST, 17-7 PH, 60.7

A-286, Titanium

Aluminum Alloy

Al Alloy, 347 SST, 17-7 PH,
A-286

347 SST

32.8
5.2

16.3

54.0

63.0

426.6
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CONCLUSIONS AND RECOMMENDATIONS

5.1 GENERAL

This study program has shown that an expander cycle engine can be designed which will

provide very high performance for an OTV application. In order to proceed with confidence

into a full-scale development program for such an engine, it is recommended that the following

areas be addressed in future technology programs.

5.2 TURBOMACHINERY

5.2.1 Bearings

The 3.0 × 10" DN value used in this study for the fuel pump roller bearings is essentially

at the limit of the state of the art. To attain higher pump speeds (and thereby increase pump

efficiency) without incurring critical speed problems, other approaches in bearing concepts

(such as improved roller element and case materials and hydrostatic journals) may be required.

Rig testing is recommended for any concept prior to committment in a development program.

5.2.2 Seals

The critical seal area for an engine of this type is the oxidizer pump seal package. While

this engine design uses a controlled gap arrangement, it is believed that a high velocity rubbing

bellows seal could be used provided that the oxidizer pump is properly balanced. If

achieveable, such a design would provide less leakage and thus better performance. A program

to optimize controlled gap seal configurations is also recommended.

5.2.3 Gears

The gear design of this engine uses a spur configuration. To improve load carrying

capability which decreases wear (and thereby increases engine life) a helical gear, because of its

increased contract area, might be considered. Improved coatings and/or case treatment for

both spur and helical gears should be investigated. Since very little data is available on the

characteristics of hydrogen-cooled gears, a technology program involving rig testing is recom-
mended.

5.3 THRUST CHAMBERS

The design of the advanced expander cycle engine's thrust chamber, using aged or _/_

hard AMZIRC, appears to be adequate to meet the engine life requirements. However, the

manufacturing of the convoluted wall design, while believed to be within the current state of

the art, has not been demonstrated on hardware of this size. Also, progress made with

electrodeposited coatings (e.g., ZrO_,) in _recent years indicates a potential benefit for chamber

LCF and for thermal enhancement. A subscale rig test technology program is recommended in
this area.
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5.4 MATERIALS

5.4.1 Characterization

There are a great many new materials which are being brought into use in various

aerospace applications to improve durability. Unfortunately, few of these materials have been

sufficienctly characterized under the conditions imposed by the OTV engine design (e.g.,

hydrogen environment, cryogenic temperatures). Therefore, it is recommended that technology

programs to investigate promising materials are studied. This effort should follow through
sufficiently to provide potential users, a "design practice" requirements document so that a
designer can utilize the new material as easily as current material.

5.5 PERFORMANCE

It is probable that the OTV will depend on a very high area ratio nozzle to obtain the

maximum possible specific impulse. To date, there has been very limited test data of

hydrogen/oxygen combustion systems with high area ratio nozzles (y > 175:1) and none

greater than 400:1. Since the test data was shown to disagree with the accepted JANNAF

computer prediction of specific impulse by as much as 1.3% and since the OTV engine may
well use nozzle area ratio of > 600:1 the performance of such a nozzle should he verified. A
technology demonstration is therefore recommended.
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